
  
 

 
File contains supplementary methods, along with Supplementary Tables 1-4 and 
Supplementary Figures 1-6. 

RNAcompete pool design 

This description is partially redundant with the online methods but adds additional 
details. 

The RNA pool design is related to our previous design11 except that highly stable 
RNA stem-loop structures were replaced with larger numbers of unstructured 
probes. To generate this new probe set, we started with a de Bruijn sequence of 
order 11 (generated using Linear Feedback Shift Registers58 with the primitive 
polynomial 
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2 ) [Primitive 
polynomial was downloaded from http://fchabaud.free.fr/English/Poly], and then 
partitioned it with sliding windows of 35nts, while overlapping by 10 nts to prevent 
the loss of any 11-mers and prepending each probe with the T7 initiator (AGA or 
AGG) that forms a less structured probe of length 38nt. This resulted in 167,773 
probes. We identified less structured probes using RNAshapes59 with the option 
to enumerate all secondary structures with free energies within 70% of the 
minimum free energy (MFE) with the following call: RNAshapes -s –c 70.0 
–r –M 30 –t 1 –o 2. We then summed the probabilities of the structures 
(output by RNAshapes) with free energies less than -2.5 kcal /mol, and used this 
value to quantify “structuredness”: if this value is larger than 0.5, that probe is 
classified as “strongly structured”. Based on this, there were 130,936 strongly 
structured probes and 36,837 weakly structured probes.  

We applied a series of strategies to ensure that each 9-mer was represented in a 
weakly structured context at least 16 times. First, we split each of the strongly 
structured probes into two equal fragments of length 19nt. Let [i-j] represent the 
subsequence starting from index i and ending at index j, inclusive. We fixed the 
prefixes([1-19]) of the probes and tried swapping the suffixes ([20-38]) using a 
greedy algorithm to match prefixes and suffixes. This succeeded in forming 
98,602 weakly structure probes, leaving 32,334 strongly structured. Then, we 
recombined the fragments [4-19] and [20-38] from two strongly structured 
probes, and prepended the T7 initiator sequence that results in a less structured 
probe. This step produced an additional 8,260 weakly structured probes. Third, 
we merged 16-mers that span the breakpoints of strongly structured probes (8 
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bases on either side).  We were able to merge 107,070 16-mers that resulted in 
53,535 weakly structured probes. We combined all the weakly structured probes 
and calculated the distribution of 9-mer occurrences. For 65,723 9-mers 
(including repeats) that were represented less than 16 times, we attempted to 
increase the number of occurrences by merging four 9-mers or three 9-mers into 
a single probe. For the 9-mers that did not result in a weakly structured probe 
when merged, we designed probes that each contain one missing 9-mer using 
RNAinverse (from the Vienna RNA package60). The final probe set contained 
214,948 weakly structured probes. 

Similar to the previous RNAcompete design, we sought two replicate sets for 
robustness and evaluation purposes. Therefore, we attempted to divide the 
probe set into two sets (i.e. Set A and Set B) with a balanced distribution of 9-
mer occurrences. To do this, we first randomly assigned probes to Set A or Set 
B, and then greedily swapped individual probes between Set A and B to attempt 
to correct imbalances in their 9-mers distributions, and continued swapping 
probes until the 9-mer distributions were as balanced as possible. After this 
greedy swapping step, Set A had 105,527 probes and Set B had 106,558 
probes. Finally, to ensure that each 9-mer appears at least 8 times in any of the 
sets, we added more probes (3804 for Set A and 3538 for Set B) formed by 
merging three 9-mers. 

Our next step was to remove probes that could lead to microarray cross-
hybridization  or RNA-RNA interactions in the pool. We ran MegaBLAST (version 
2.2.20 with command line parameters(-W 12 -D 3 -g -S 3)) in order to identify 
matches with at least 14 consecutive bases, or with at least 17 bases with at 
least 12 consecutive bases, to other sequences in either the forward or reverse 
orientation. Some probes can match to many other probes because the same set 
of 9-mers tends to get merged in the same probe when we try to combine three 
or four 9-mers. We removed the probes that have matches to at least four other 
probes. For probes with less than four matches, we attempted to disrupt the 
matches by modifying the two bases in the middle of matching subsequences. 
Among the 15 (except the original probe from 16 possible modifications) modified 
probes, we kept the ones that are weakly structured. We also checked for 
matches between the set of modified probes and the original probe set, and 
removed the modified probes that have matches to the original probe set. Then, 
we checked the distribution of 9-mers and designed probes to add missing 9-
mers either by merging three 9-mers or designing a single probe for a single 9-
mer (using RNAinverse) when merging was not possible. After the addition of 
these new probes, we re-ran MegaBLAST and repeated the procedure described 
above. During this iterative process, we also made sure that the Sap1 restriction 
sites did not appear in newly designed probes. We fixed the probe set once each 
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9-mer was represented at least 8 copies in each set. There were 109,642 probes 
in Set A and 110,348 probes in Set B. Since we had more space in the array, we 
duplicated some of the probes and ended up with 120,326 probes in Set A and 
121,031 probes in Set B. Lastly, we added 22 control sequences which are 
known targets for a set of RBPs. The final Set A and Set B each contained at 
least 8 copies of each 9-mer, 33 copies of each 8-mer and 155 copies of 
each 7-mer. There remained 2,858 strongly structured probes (containing 9-
mers that are self-structured) in the final design. 

Protein cloning 

RBP cDNA inserts were cloned into the multiple-cloning site of pDEST15 based 
expression vectors, pTH532561 and pTH6838 (a derivative of pTH5325 
engineered with additional restriction enzyme sites to facilitate cloning), using 
standard molecular biology techniques.  The vector map and sequence for 
pTH6838 is posted on our Supplementary Data page 
(http://hugheslab.ccbr.utoronto.ca/supplementary-data/RNAcompete_eukarya/).  
Primers were designed to amplify DNA corresponding to full-length RBPs and 
various RBP fragments, based on boundaries defined by Pfam (as described in 
supplementary section “Derivation of sequence similarity rules and construction 
of cisBP-RNA”).  We initially investigated three types of constructs:  (1) full-length 
proteins;  (2) “core” RNA-binding regions (RBRs) which we defined to consist of a 
contiguous region containing all RBDs in a given RBP; (3) discrete RBDs (e.g. 
RBD1 and RBD2 etc. in separate constructs, for instances where an RBP 
contains multiple RBDs). We cloned RBRs and discrete RBDs with either an 
additional 90 or 150 bp (i.e. 30 or 50 amino acid residues) of respective 5'- and 
3'- flanking sequence from corresponding cDNA or RNA templates, as structural 
studies have demonstrated that amino acids neighboring an RBD can impact 
RNA-binding affinity and specificity 48, 49. Preliminary RNAcompete analysis of 62 
constructs from a panel of 19 drosophila RBPs indicated that when successful, 
RBRs and full length RBPs yield comparable RNAcompete data, whereas the 
majority of discrete RBDs do not pass internal RNAcompete quality control 
checks. We found the success rate of RBRs in RNAcompete assays to be 
slightly higher (~1.25-fold) than full-length RBPs, and >4-fold higher than discrete 
RBDs (Table S1).  In addition, cloning and purification of RBRs was more 
reliable and efficient than full-length RBPs.  Thus, most of the constructs used in 
this study contain RBRs. Note that we also used some inserts from collaborators 
that did not satisfy these guidelines, and that we only included flanking sequence 
up to the start or end of the annotated coding region of the protein.  The 
sequences of all inserts and their source are compiled in Supplementary Data 
2. 
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RNAcompete assay 

The RNA pool generation, RNAcompete pulldown assays, microarray 
hybridizations, and microarray data quantification were performed as previously 
described11 with the following exceptions: (i) the common 3’-end linker from the 
dsDNA pool was removed by digestion with BspQI instead of SapI and (ii) GST-
tagged RBPs and RNA pool were typically incubated in 1 mL of Binding Buffer 
(20 mM Hepes pH 7.8, 80 mM KCl,  20 mM NaCl, 10% glycerol, 2 mM DTT, 0.1 
µg/µL BSA) containing 20 µL glutathione sepharose 4B (GE Healthcare) beads 
(washed 3 times in Binding Buffer) for 30 minutes at 4°C, and subsequently 
washed four times for two minutes with Binding Buffer at 4°C. In some instances, 
alternative binding and washing conditions were used; these are listed together 
with individual experiments and hybridizations are listed in Supplementary Data 
2. 

Normalization of probe intensities 

This section is partially redundant with the online methods but adds additional details. 

Hybridizations were batched based on whether or not they used the same initial 
RNA pool because arrays using the same pool tended to require similar 
normalization.  Each batch was represented as a matrix where rows correspond 
to probes and columns are the pulldown intensities of  each RBP profiled in that 
batch. Note that we treated the red and green channels of the array as separate 
one colour hybridizations. From this matrix, we set to NaN elements 
corresponding to probes that we identified by visual inspection whose intensities 
were affected by spatial trends or image analysis artifacts. Then, to correct for 
any differences in laser power and to ensure that abundance estimates in each 
column were in the same scale, we applied a separate global normalization to 
each column. Specifically, we applied an affine transformation to each column 
(i.e. we added a bias and rescaled the elements of the column) so that the 
median and inter-quartile range (IQR) of each column was equal to the median of 
the column medians and the median of the column IQRs, respectively. To correct 
for differences in the RNA oligo abundances in the initial RNA pool, we then 
performed a row normalization. Specifically, we subtracted the row median from 
each element in the row and then divided by a robust estimate of the standard 
deviation, which we set equal to 1.4826 times the median absolute deviation of 
the row. We call this row normalization a robust z-transform. We found – based 
on visual inspection of motifs and reproducibility of 7-mers scores for the same 
RBPs within and across batches – that the robust z-transform provided a better 
correction for differences in the abundances of RNA oligos in the initial pool than 
dividing by a direct measurement of the oligo abundances from a microarray 
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(data not shown). As a final normalization, so that we could interpret the 
normalized probe intensities in a column as z-scores, we performed a robust z-
transform on the column. 

Testing stability of RBFOX1 target transcripts by qRT-PCR 

To generate stable cells expressing doxycycline-inducible human RBFOX1, Flp-
inTM-293 cells (Invitrogen) were co-transfected with the pOG44 Flp recombinase 
expression vector along with a modified gateway-compatible pcDNA5-FRT-FLAG 
vector containing human RBFOX1 cDNA (NM_018723), using Lipofectamine 
2000 (Invitrogen) transfection reagent. Stable cells were selected with 200 µg/mL 
hygromycin B for roughly 2 weeks after which stably expressing colonies were 
pooled.  
 
To test the effects of RBFOX1 on transcript stability, reporter constructs 
containing the CADPS (NM_003716) 3'-UTR were generated. CADPS 3’UTR 
sequences (mRNA nucleotide positions 4423-4773), containing either a wild-type 
(UGCAUG) or mutant (UGAGUC) RBFOX1 site (nucleotide position 4472), were 
cloned into the unique XbaI site of the pGL4.13 (Promega) mammalian luciferase 
expression vector.  
 
Stable cells expressing RBFOX1 were plated in 6-well plates. To reduce the 
potential for RBFOX1-redundant regulators, 24 hours after plating, the cells were 
transfected with 30 nM of RBFOX2-targeting siRNA (SIGMA-ALDRICH: siRNA 
ID SASI_Hs01_00242056).  After 18 hours, 1 µg/mL of doxycycline was added to 
half of the cells to initiate RBFOX1 production. Six hours after initiating RBFOX1 
expression, cells were transfected with 1 µg of stability reporter along with 250 ng 
of pmCherry-C1 plasmid as transfection control. 42 hours after plasmid 
transfection cells were treated with 10 µM Actinomycin D for 6 hours to halt 
transcription prior to harvest.  
 
Total RNA was extracted from cells using TRI reagent (SIGMA-ALDRICH) and 
treated with DNaseI (Roche Applied Science). For quantitative qRT-PCR, cDNA 
was generated using 500 ng of DNaseI-treated total RNA using SuperScriptIII 
Reverse Transcriptase (Invitrogen). qRT-PCR was performed in a 384-well plate 
using 20ng of cDNA per reaction and FastStartUniversal SYBR Green Master 
(Roche Applied Science). Levels of luciferase transcript were normalized to the 
levels of mCherry transfection control. Primer sequences used for the qRT-PCR 
reactions are available upon request.  
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Figure S1. Data supporting the in vivo relevance of individual RBFOX1 
binding sites in transcripts. 

(a) Relative abundance of RBFOX1 predicted targets in RBFOX1 RNAi data36. 
Transcripts are binned according to the number of sites in the 3’UTR.  Error bars 
indicate 25th and 75th percentile of the distribution.  The differences between 0-1, 
0-2, and 0-3 are all significant (P < 0.01, one-sided T-test).   (b) Testing stability 
of RBFOX1 target transcripts by qRT-PCR.  Cells expressing recombinant 
RBFOX1 under doxycycline control were sequentially transfected with RBFOX2-
targeting siRNAs and pGL4.13 (Promega) mammalian luciferase expression 
vector encoding luciferase fused to CADPS 3’UTR containing either a wild-type 
or mutant RBFOX1 site, along with a constitutively-expressed mCherry 
transfection control plasmid. 6 hours before harvesting, transcription was shut off 
by treating cells with 10 !M Actinomycin D. Levels of luciferase transcript fused 
to either wild-type or mutant 3’UTR (wt/mut) in the presence or absence of 
doxycycline-induced RBFOX1 expression (-/+ Dox) was quantified using qRT-
PCR. Transcript levels were normalized to mCherry control transcript. Error bars 
correspond to standard deviation of triplicate qRT-PCR runs performed on 
samples from a single transfection experiment.   
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Justification for use of top 10 7-mer procedure to define motifs 

We evaluated a panel of alternative approaches to motif derivation, including 
RNAcontext62, Malarkey (HK and QDM, manuscript in preparation), MEME63, 
MatrixREDUCE64, BEEML-PBM65, and the same top 10 procedure using k-mers 
of lengths other than 7.  We tested the efficacy of the motifs in cross-validation 
between the A and B probe sets, reproducibility between biological replicates, 
similarity of motifs obtained between proteins with related amino acid sequences, 
similarity of motifs obtained to literature motifs, and ability to predict in vivo 
data.  The 7-mer based top 10 motif derivation method was the only approach 
that scored consistently well across all tests.  The results of this analysis will be 
presented elsewhere (KBC, manuscript in preparation). 

Data Availability 

Data are available under NCBI GEO accession GSE41235.  Data are also 
posted on our project website, http://hugheslab.ccbr.utoronto.ca/supplementary-
data/RNAcompete_eukarya/.  The cis-BP-RNA database, which is browsable 
and searchable, is at http://cisbp-rna.ccbr.utoronto.ca/. 

Secondary structure analyses 

This section is partially redundant with the description in online methods but 
contains more detail. 

We predicted the secondary structures of the probe sequences using an existing 
tool called RNAplfold53. RNAplfold considers the ensemble of all possible 
structures of an RNA sequence to calculate probabilities for each base to be in 
various structural contexts (e.g. hairpin loop, external loop). We modified 
RNAplfold so that instead of outputting the accessibility (i.e. the probability that 
the region of interest is single-stranded), it outputs the probabilities for the region 
of interest to be in four possible single-stranded contexts: hairpin loop, internal or 
bulge loop, external loop (i.e., ssRNA not in a loop), or multiloop (i.e., ssRNA in a 
loop containing 3 or more stems). These four probabilities sum up to the original 
accessibility.  We ran this modified RNAplfold with the option –u 1 and set -W 
and -L arguments equal to the length of the probe. Then using the RNAplfold 
output, for each probe, we computed a matrix (which we call the secondary 
structure profile) where rows represent the accessibility and the four ssRNA 
structural contexts (i.e., hairpin loop, internal loop, multiloop, external loop) and 
columns correspond to the positions of the probe sequence. Each entry of this 
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matrix represents the probability of a base to appear in a particular structural 
context.  

Our next step was to analyze these profiles to check whether an RBP displayed 
a specific secondary structure preference in a given RNAcompete assay. To do 
this, we split the probes containing one of the top 10 7-mers for each RBP into a 
bottom and top half according to their intensities. If a probe is selected for both 
bottom and top halves (because it was in the top half for one of the 10 7-mers 
and in the bottom half for the other), we kept the probe in both sets. Then, for 
each of the five structure contexts (ssRNA, and the four other contexts described 
over), we computed the average probability for each 7-mer in each probe and 
compared the distributions of these values among the probes in the top and 
bottom halves using Wilcoxon's rank sum test (two-sided) with multiple testing 
correction. We repeated this analysis separately for Set A and Set B and retained 
only the preferences that were found to be significant (Bonferroni-corrected P < 
0.05) both in Set A and Set B. After performing this analysis, we found that a 
large number of RBPs had a preference for multiloop but this result was difficult 
to interpret because the probabilities for the multiloop context were very low in all 
cases – as such, we removed these preferences from further analysis but did not 
modify the Bonferroni correction.   

Supplementary Data 3 contains the results of this analysis.  When an RBP had 
multiple RNAcompete assays associated with it, we deemed an RBP to display a 
secondary structure preference in RNAcompete if any of its assays demonstrated 
that preference. 

Success rate of multiple versus single RBD RBP constructs 

As part of our assay optimization process, we evaluated how well different RNA-
binding constructs worked in RNAcompete for the same set of RBPs. We 
compared full-length (FL) proteins, RNA-binding regions (RBRs) as defined 
above, or individual RBDs. To perform this comparison, we generated 44 
constructs from 12 Drosophila RBPs by cloning corresponding FL (12), RBR 
(12), and individual RBD (20) cDNA fragments. Successful experiments for single 
(e.g. RRM1, KH1, etc.) and multi-RBD (e.g. RRM x3, KH x2, etc.) containing 
RBPs were determined based on the presence of clear PWM motifs–represented 
in Figure 2 as well as the RNAcompete website. Success rates for the various 
single and multi-RBD domain types are summarized in Table S1.  Based on this 
analysis, we prepared RBR constructs for most of the RBPs that we assayed. 
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Table S1: Comparison of RNAcompete success rates for full-length RBPs, 
RNA-binding regions and individual RNA-binding domains. 

Gene name Structure Construct type Success? 

aret RRM x3 FL Yes 

  RRM x3 RBR Yes 

  RRM1 RBD No 

  RRM2 RBD No 

  RRM3 RBD Yes 

CG2931 RRM x1 FL Yes 

  RRM RBR No 

CG3056 RRM x2 FL No 

  RRM x2 RBR No 

  RRM1 RBD No 

  RRM2 RBD No 

CG4612 RRM x2 FL No 

  RRM x2 RBR No 

  RRM1 RBD No 

  RRM2 RBD No 

CG7082 (PAPI) KH x2, Tudor FL No 

  KH x2, Tudor RBR Yes 

  KH1 RBD No 

  KH2 RBD No 

Hrb27C RRM x2 FL Yes 

  RRM x2 RBR Yes 

  RRM1 RBD No 

  RRM2 RBD No 
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Hrb98DE RRM x2 FL Yes 

  RRM x2 RBR Yes 

  RRM1 RBD No 

  RRM2 RBD No 

mub KH x3 FL No 

  KH x3 RBR No 

  KH1 RBD No 

  KH2 RBD No 

  KH3 RBD Yes 

Rsf1 RRM x1 FL No 

  RRM RBR Yes 

tsu RRM x1 FL No 

  RRM RBR No 

xl6 
RRM x1, 
zf_CCHC FL No 

  
RRM x1, 
zf_CCHC RBR No 

  RRM RBD No 

  zf_CCHC RBD No 

yu KH x1, Tudor FL No 

  KH x1, Tudor RBR No 

  KH RBD No 

  Tudor RBD No 

Construct # Assayed # Successes Success Rate (%) 

FL 12 4 33.3 

RBR 12 5 41.7 

RBD 20 2 10.0 
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Compilation of in vivo datasets 

This section contains some information already provided in the online methods 
but describes our methodology in much greater detail. 

We compiled data sets from the literature that report RNAs associated with 
individual proteins using genome-wide techniques.  The positive and negative 
sets are posted on our project web site 
(http://hugheslab.ccbr.utoronto.ca/supplementary-data/RNAcompete_eukarya/).  
Note that in some cases multiple data sets were obtained for the same protein. 
The data sources and the procedure by which we defined “bound” and “unbound” 
sequences are described in Table S2.   

Compilation of these data sets required us to extract the sequences that either 
correspond to the mature mRNA sequence of a gene or to the genomic locus 
covered by the pre-mRNA transcript of the gene. To define these sequences, we 
downloaded the mouse (mm9), rat (rn4) and human genome builds (hg18 and 
hg19) and their corresponding Refseq gene sets from the UCSC Genome 
Browser66. Fly (Drosophila melanogaster) genes were downloaded from Ensembl 
BioMART in August 2012 and represent the BDGP 5.4 release of gene models. 
When there are multiple isoforms for the same gene we used the longest isoform 
to define its mature mRNA sequence and the genomic locus covered by its pre-
mRNA sequence.  

To perform the ROC analyses for assessing how well RNAcompete motifs 
reproduce in vivo binding data, we needed to define a set of bound and unbound 
sequences. For most CLIP data sets, we applied a common procedure where we 
either used all or a defined subset of the identified peaks to be the bound 
sequences – often these peaks are described as “clusters of reads” in the 
corresponding papers. For these datasets, we also often needed to define 
“unbound sequences” – to do so, we selected random non-peak windows of 
matching length from the pre-mRNA sequence (defined as described above) 
from the same set of genes. Hereafter, we call this the “random windows” 
procedure. Note that although these windows are selected from the same set of 
genes as the peaks, we did not require the procedure to select at least one 
window from each gene and, as such, multiple non-peak windows could be 
selected from the same gene as long as they are at least 300 nts away from the 
ends of the peaks. We utilized the features of the BEDTools suite both for 
extracting sequences that correspond to genomic locations (covered by pre-
mRNA sequences) and for selecting random regions to define unbound 
sequences. 
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RIP-based in vivo binding data typically only has transcript resolution and 
measures binding to mature mRNAs. Unless otherwise indicated below, we used 
the mature mRNA sequences defined as described above for the “bound” and 
“unbound” sequences. 

Note that the actual number of sequences in bound and unbound set of the 
compiled data set can be lower than the selected number of sequences when the 
length of a cluster is too short (<12) or the cluster does not reside within a gene 
for CLIP data or the reported gene IDs do not have a matching Refseq mRNA 
sequence for RIP data. 

 

Table S2: Summary of in vivo datasets compiled and definitions of bound 
and unbound sequences.    

RBP Method Selection of bound and unbound 
sequences 

Reference 
(# refers to 
reference 
section) 

Name of in vivo 
dataset (# of 
bound/# unbound 
transcripts) 

Vts1p RIP-chip Bound and unbound sequences were obtained 
from the authors of a previous study13 that 
analyzed this data. 

39 Vts1p 

(121 / 1449) 

ELAVL167-69 
70

 

FUS14 
TAF1514 
IGF2BP1-371

 

 

PUM271
 

QKI71 
SFRS172 
TIA173 
TIAL173 
TARDBP74

 

 

CLIP-seq We defined sequences with doRINA75 scores 
(please see the doRINA paper for more details on 
the definition of peaks and the calculation of 
scores associated with these peaks) in the top five 
percentile as bound sequences. When necessary, 
we reduced the percentile cutoff to include a 
minimum of 1,000 sequences. We used the 
“random windows” procedure to define the 
unbound sequences. 

Note: The first four entries of the fifth column 
correspond to ELAVL1 data sets which are 
compiled from 67; from 68 doRINA ids ELAVL1-
MNASE PAR-CLIP; from 68 doRINA ids ELAVL1-
PARCLIP; and from 69 respectively. Subsequent 
entries appear in the same order as the RBPs in 
the first column. 

75
 ELAVL1_Lebedeva

(1,445 / 1,445) 

ELAVL1_MNASE 

(1000 / 1000) 

ELAVL1_Mukharjee 

(5,625 / 5,625) 

ELAVL1_Hafner 

(1000 / 1000) 

FUS (1,568 / 1,568) 

TAF15 (1,000 / 
1,000) 

IGF2BP1-3 (3,799 / 
3,799) 

PUM2 (1,000/ 
1,000) 

QKI (1,000 / 1,000) 

SFRS1 (310 / 314) 

TIA1 (1,000 / 968) 

TIAL1 (2,117 / 
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2,093) 

TARDBP_iCLIP 
(4,755 / 4,745) 

FOX-2 CLIP-seq We downloaded CLIP-derived clusters from UCSC 
Genome Browser under ‘Regulation’ track. We 
used all the identified clusters as bound 
sequences, and used the “random windows” 
procedure to define the unbound sequences. 

24
 FOX-2 (3,547 / 

3,547) 

Mbnl1 CLIP-seq We downloaded CLIP-derived clusters from the 
corresponding GEO submission (GSM1226-30). 
We used all the identified clusters as bound 
sequences, and defined the unbound sequences 
using the “random windows” procedure. 

Note: The fifth column contains five entries that 
correspond to data sets compiled from GSM1226 
(B6Brain), GSM1227 (129Brain), GSM1228 
(B6Heart), GSM1229 (B6Muscle), GSM1230 
(C2C12). 

27
 Mbnl1_B6Brain 

(3,177 / 3,177) 

Mbnl1_B129Brain 

(11,580 / 11,580) 

Mbnl1_B6Heart 

(645 / 645) 

Mbnl1_B6Muscle 

(443 / 443) 

Mbnl1_C2C12 

(24,191 / 24,191) 

LIN28 CLIP-seq Bound and unbound sequences were obtained 
from the authors. 

Note: Two different cell lines were used in this 
study: H9 human ES (hES) and LIN28-V5 293. 
The four entries in the fifth column correspond to 
data sets compiled from hES clusters in 3’ UTRs, 
hES clusters in coding regions, LIN28-V5 293 
clusters in 3’UREs and LIN28-V5 293 clusters in 
coding regions, respectively. 

76
 LIN28_hES_3UTR 

(12,399 / 3,945) 

LIN28_hES_coding
_exons 

(6,461 / 1,647) 

LIN28_v5_3UTR 

(6,525 / 1,582) 

LIN28_v5_coding_e
xons 

(3,554 / 668) 

RBM4 PAR-
CLIP 

We downloaded the list of genes associated with 
the RBP from the supplementary data of the 
original study. We defined the mature mRNA 
sequences of top 1,000 genes with highest 
number of matching reads as the bound 
sequences. Unbound sequences were randomly 
selected mature mRNA sequences from the 
remaining set of human genes (hg18 build, Refseq 
gene models as described above). 

77
 RBM4 

(824 / 1000) 

Lark RIP-chip We used the list of genes identified in the original 
study (Supplementary Table 1) as bound 
sequences. We prepared two data sets; one 
contained the union of genes identified in two 
replicate experiments (Expt 1 and 2), other 
contained the genes identified in both of the 

78
 Lark_union 

(168 / 221) 

Lark_shared 

(65 / 80) 
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experiments. 

Unbound sequences were randomly selected from 
the remaining set of fly genes (BDGP 5.4, as 
defined above). 

CPEB4 RIP-seq We used the p-value cutoff used in the original 
study to define genes whose mature RNA 
sequences were used as the bound sequences 
(Supplementary Table 2, p-value < 0.05). We 
selected unbound sequences from the mature 
mRNA sequences associated with the 942 genes 
with the highest p-values. 

79
 CPEB4 

(927 / 942) 

TARDBP RIP-seq We downloaded the data from the corresponding 
GEO submission (GSM614808). We first filtered 
out the genes that have less than 10 reads 
mapped. We then sorted the genes based on 
either “exonic read density” or “intronic read 
density” (as defined in 80), obtaining two lists. We 
then found genes that appeared in the top 1000 of 
both lists and used their mature mRNA sequences 
as the bound sequences. Similarly, we used the 
genes that appear in the bottom 1000 of both lists 
to define the unbound sequences.   

80
 TARDBP_RIP 

(422 / 565) 

MSI RIP-chip We downloaded the data from the corresponding 
GEO submission (GSE30904). As suggested by 
the authors, we used the mature mRNA 
sequences of the top 50 genes with highest 
enrichment ratios as the bound sequences. We 
randomly chose genes from the remaining set of 
human genes (hg19 build, Refseq gene model) to 
define the unbound set. 

81
 (MSI) 

42 / 50 

hnRNPA1 

hnRNPA2B1 

CLIP-seq Bound and unbound sequences were obtained 
from the authors. 

19
 hnRNPA1 

(433 / 433) 

hnRNPA2B1 

(1361 / 1361) 

SHEP RIP-seq Unpublished RIP-seq data for Shep were obtained 
from the authors of the referenced study. Genes 
that are enriched in the immunoprecipitates 
(adjusted p-value < 0.05, fold change > 1.5) were 
defined as the bound genes. Unbound genes were 
selected from those that have the p-values equal 
to 1. 

We also used a more stringent definition of 
enrichment where we include only the genes with 
average number of background counts greater 
than 220. 

Note: The fifth column contains four entries that 
correspond to data sets compiled from bg3 cell 
lines with default constraints, bg3 cell lines with 
stringent constraints, kc cell lines with default 
constraints and kc cell lines with stringent 
constraints, respectively. 

82
 SHEP_bg3_normal 

(168 / 290) 

SHEP_bg3_stringe
nt 

(110 / 221) 

SHEP_kc_normal 

(373 / 674) 

SHEP_kc_stringent 

(262 / 527) 
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FMR1 CLIP-seq 
and RIP-
seq 

We compiled the CLIP data sets from 
Supplementary Table 2a and 2b of the original 
paper. We prepared two data sets from each 
table, where we include the top and bottom 1000 
or 5000 clusters based on PARalyzer peak score. 

We prepared the RIP-seq data set from 
Supplementary Table 6 of the original paper. We 
defined the bound sequences as the mature 
mRNA sequences associated with the genes that 
have the highest 1000 enrichment scores. 
Similarly, unbound sequences are defined as the 
genes with lowest 1000 enrichment scores. 

Note: The first two entries of the fifth column 
correspond to data sets prepared from Table 2a 
with top (and bottom) 1000 and 5000 clusters, 
respectively. The third and fourth entries 
correspond to data sets prepared from Table 2b 
with top (and bottom) 1000 and 5000 clusters, 
respectively. The last entry corresponds to the 
RIP-seq data set. 

83
 FMR1_table2a_top

1K 

(995 / 876) 

FMR1_table2a_top
5K 

(4,653 / 4,352) 

FMR1_table2b_top
1K 

(901 / 853) 

FMR1_table2b_top
5K 

(4,369 / 4,312) 

FMR1_top1K 

(1000 / 1000) 

PTBP1 CLIP-seq We used the peaks compiled by the original study 
(GSE19323) as the bound set, and we used the 
“random windows” procedure to define the 
unbound sequences. 

 

34
 PTBP1 

(2553 / 2547) 

	  

Learning Malarkey motif models from in vivo datasets 

Malarkey is a motif finding method that infers both sequence and structure 
binding preferences of an RBP from experimental binding data (manuscript in 
preparation). Malarkey fits its model parameters by using multilinear regression 
to maximize the agreement between Malarkey-predicted affinities and 
experimental data for the input set of sequences.  

Malarkey motif models are fit to in vivo data sets where bound sequences are 
labeled as 1 and unbound sequences are labeled as 0. In order to make a fair 
comparison against RNAcompete-derived motifs, we fitted Malarkey without the 
secondary structure model and with a fixed motif length of 7. In this mode, except 
for the differences described below, Malarkey’s motif finding algorithm is nearly 
identical to MatrixREDUCE84. To evaluate the predictive performance of 
Malarkey motifs, we used a 10-fold cross validation scheme and calculated the 
average AUROC across the 10 held-out sets. Similarly, we scanned the same 
held-out sets with RNAcompete-derived PFMs and compared the average 
AUROCs. 
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Figure S2: Comparison of AUROCs of RNAcompete and Malarkey defined 
motifs on in vivo binding data. 

Plots in each scatterplot are AUROCs for a pair of columns in Suppl. Data 6 (A) 
Shows that with the exception of Fus and Taf15, there is a close correspondence 
between the performance of RNAcompete motifs and Malarkey motifs obtained 
from the in vivo data; (B) Shows that the slight increase in AUROC obtained from 
Malarkey in (A) is not due to the Malarkey algorithm, but instead due to factors 
present in vivo but not in vitro.  (C) Shows that the RNAcompete motifs generally 
perform comparably or better than literature motifs for the same protein.  (D) 
Direct comparison of Malarkey motifs in vivo and in vitro. 
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Analysis of Drosophila post-transcriptional data sets 

This section contains information also presented in the online methods but 
provides greater detail. 

We used previously published Drosophila post-transcriptional regulation (PTR) 
datasets (i.e. the flyFISH website and supplementary data from references40, 41, 

55, 56) to define a set of 112 categories of post-transcriptional fate and for each 
category defined two sets of transcripts: a “positive set” and a “negative set”. The 
positive set consisted of those transcripts with the post-transcriptional fate 
described by that category and the negative set consisted of those transcripts 
that were expressed under the same conditions as the positives but were not 
annotated as having the given fate. These sets and further details of their 
definition will be provided in a forthcoming publication (XL, HDL, and QM, in 
preparation). For each compiled dataset, we performed a likelihood ratio test to 
assess whether any of the motifs from our collection could better distinguish the 
positive set from the negative set when provided to a regression algorithm that 
also had access to a control set of features that consisted of all the dinucleotides 
contained within the corresponding motif as well as the length of the target 
sequence; the construction of these regression models is described below. The 
comparisons between the motif and the control features were restricted to either 
the 3’ UTR or the coding region of the transcripts. We scored each 3’ UTR or 
coding region using a given motif by summing the accessibility of all the target 
sites, where a target site was defined as a perfect match to the IUPAC 
representation of the motif (see Supplementary Data 8 for IUPAC motifs used in 
these analysis) and the accessibility of a target site was defined as the average 
single base accessibility of the bases in the site. A score of zero was assigned to 
those transcripts whose 3’ UTRs or coding regions did not contain a motif match. 
The single base accessibility was assessed using RNAplfold53 as described 
previously13 and in the “Secondary Structure Analysis” section above. We 
used the parameters with W=80, L=40 and U=1. Although the analysis was 
applied in the 3’ UTR or the coding region, the entire transcript was input into 
RNAplfold to ensure correct folding of the bases close to the start codon and stop 
codon. We used the glmnet.R package (version 1.8) 85 to apply Lasso penalized 
logistic regression to predict the particular PTR dataset using the feature sets 
containing the score calculated for one motif and the relevant control features. In 
the Lasso regression, the hyper-parameter lambda (i.e. the regularization 
strength) was selected through a five-fold cross-validation procedure, from the 
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lambda sequence computed by glmnet using the default settings of nlambda and 
lambda.min.ratio. The final value for lambda was the one (from the sequence) 
with the smallest average generalization error across the five folds. We then 
used this value of lambda with the ‘glmnet.fit’ object on the entire dataset to 
compute the weights for the features. The features with non-zero weights were 
selected as contributing most to the prediction. After the non-zero weight features 
were defined, we trained two standard logistic regression models: one using all 
non-zero weight features (including the motif) and one that contained only the 
non-zero weighted control features, and then assessed whether there was a 
significant difference in predictive power between these two nested models using 
a log-likelihood ratio test (as per the procedure recommended in 86). We then 
used these P-values to compute a false-discovery rate using the Benjamini-
Hochberg procedure.  The motifs, RBPs, and categories that with FDR < 0.1 are 
provided in Supplementary Data 8. 

Assessing tissue alternative splicing levels using RNA-Seq data 

This section expands on methods presented in online methods. 

Information on intron-exon structures was extracted from Ensembl annotations 
(release 65) for the human (hg19) genome. This information was used to 
generate a Bowtie library of non-redundant exon-exon junction (EEJ) sequences 
by combining every possible (forward combination) splicing donor and acceptor 
within each gene. For each EEJ sequence, we determined the effective number 
of unique mappable positions for a given read length (k). We extracted the L-k+1 
(L being the EEJ length) k-mers from each EEJ sequence and then aligned the 
full set of k-mers against the EEJ library plus the respective genome using 
Bowtie87, allowing for a maximum of two mismatches along the entire length of 
the read. The number of k-mers with one unique alignment was counted; this 
corresponds to the junction’s effective number of unique mappable positions for a 
given set of RNA-Seq k-mers. 

RNA-Seq reads from the different samples were then mapped to the EEJ 
libraries using Bowtie with –m 1 –v 2 parameters. Reads were trimmed to 50 
nucleotides, if longer, and reads that had full-length mappings to the genome 
were discarded because EEJs should not exist as contiguous sequences in the 
genome. A minimum of eight mapped nucleotides was required for each of the 
two exons forming a given EEJ. Next, the outputs were parsed to identify 
cassette exons – exons that are either included or fully excluded from the 
transcripts – by identifying exons that have associated reads mapping to (i) both 
EEJs supporting the inclusion of the exon (constitutive upstream exon (C1)-
cassette exon (A) and A-constitutive downstream exon (C2), or C1A and AC2) 
and (ii) the EEJ for the exclusion of the exon (i.e. C1C2).  
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The inclusion level of an exon was defined as the percentage of gene transcripts 
in which a given exon is spliced in (PSI). This was estimated using read counts 
mapping to EEJs. The initial read counts for each EEJ k (EEJk,count) were 
corrected for mappability (i.e. the uniqueness of the EEJ among the 
transcriptome) as follows (EEJk,corrected = EEJk,count / MAPk * MAPMAX) where MAPk 

is the mappability for the EEJ for read length k as described above, and 
MAPMAX is the maximum mappability for a EEJ for a given read length (e.g., 
MAPMAX = 35 for k = 50nt). After correction, we renamed each corrected EEJ 
count according the position of the EEJ relative to the alternative exon under 
consideration, and computed the PSI as follows: 

PSI = 100% * EEJ_Reads_Supporting_A / EEJ_Reads_Mapping_to_A_or_Adjacent_Exons,	  

where	  EEJ_Reads_Supporting_A = [Σi CiA] + [Σi ACj]	  and 

EEJ_Reads_Mapping_to_A_or_Adjacent_Exons =[Σi CiA] + [Σi ACj] +[Σi CiC2] + [Σi C1Cj]	  

where Ci is any possible splicing donor upstream of the alternative exon 
(including C1);  Cj is any possible splicing acceptor downstream of the alternative 
exon (including C2) and CiA, ACj, CiC2, and C1Cj represent the corrected read 
count mapping to the indicated EEJ (EEJk,corrected as defined above).  Alternative 
exons were only included when a minimal transcript coverage requirement was 
met of (i) ≥15 corrected reads mapping to the exclusion EEJs, or (ii) ≥15 
corrected reads mapping to one of the sets of inclusion EEJs (CiA or ACj), and 
≥10 to the other set of inclusion EEJs. For alternative exons with multiple 
acceptor/donor splice sites, we used the splice site combination with the highest 
read support. When several putative C1 and/or C2 exons could be defined, we 
used the one with the highest read support as reference. 

Associating motifs with alternative splicing regulation 

This section repeats and expands on methods presented in the online methods. 

We processed a collection of 34 RNA-seq experiments from diverse human 
tissues and cell lines (listed in Table S3) to measure the expression level of 
genes as well as abundance of splicing events in each sample. In particular, we 
downloaded the raw read data from GEO and reprocessed the data using an in-
house pipeline described in detail in the previous section. This pipeline computed 
percent-spliced-in (PSI) of alternatively spliced cassette exons for a previously 
defined set of alternatively spliced cassette exons across the 34 experiments, as 
well as corrected RPKM (cRPKM) profiles (reads per kilobase per million 
mapped reads corrected for mappability as described in the previous section) for 
each gene across the 34 experiments. The PSI value is an estimate of the 
proportion of transcripts that include the alternative exon in a particular tissue or 
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cell line, and cRPKM is a measure of the abundance of transcripts from a given 
gene in a tissue or cell line. We hypothesized that if RBP x is involved in 
regulating splicing, the cRPKM profile of its gene should be either correlated with 
the PSI profiles of its target exons (indicating a role of RBP x in promoting exon 
inclusion), or anti-correlated (indicating a role in promoting exon exclusion), 
where its target exons were identified based on matches to one or more motifs 
associated with that RBP x within a defined splicing regulatory region associated 
with the target exon. 

We associated each target exon with 32 different possible regulatory regions; 
these regions were defined based on their positions relative to splice boundaries 
of the target exon or its neighboring exons. In the following definitions, the target 
exon is called “exon A” (because it is Alternative), its upstream exon (i.e. 5’ to 
exon A) is called “exon C1”, its upstream intron (i.e. lying between C1 and A) is 
called “intron I1”, its downstream exon is called “exon C2”, and its downstream 
intron is called “intron I2”. We removed from consideration any cassette exon 
event for which any of C1, A, or C2 were less than 100nt in length or either I1 or I2 
were less than 300nt in length. We then defined eight regulatory areas (i)-(viii) as 
follows: (i) the 100-nucleotide exonic region upstream of the 3’ end of the exon 
C1, (ii) the 300-nucleotide intronic region downstream of the 5’ end of the intron 
I1, (iii) the 300-nucleotide intronic region upstream of the 3’ end of the intron I1, 
(iv) the 100-nucleotide exonic region downstream of the 5’ end of exon A, (v) the 
100-nucleotide exonic region upstream of the 3’ end of exon A, (vi) the 300-
nucleotide intronic region downstream of the 5’ end of the intron I2, (vii) the 300-
nucleotide intronic region upstream of the 3’ end of the intron I2, and (viii) the 
100-nucleotide exonic region downstream of the 5’ end of the exon C2. Each of 
the eight regulatory areas was divided into 50-nucleotide-long bins, resulting in a 
total of 32 regulatory regions. We analyzed each of these region types separately 
as described in the following paragraph.  The sequences for regulatory areas (i)-
(viii) were retrieved from the hg19 assembly of the human genome based on 
Ensembl annotations (release 69). 

To identify whether an RBP x may promote inclusion or exclusion of its target 
exons by binding in regulatory region r, we first sorted all alternatively spliced 
exons by the descending order of the Pearson correlation of their PSI profiles 
with the cRPKM profile of RBP x, resulting in the sorted list Lx. We then 
determined whether exons with significant matches to one or more motifs 
associated with RBP x in region r were significantly enriched at the top of list Lx 
(indicating that binding of RBP x in r promotes inclusion) or at the bottom of list Lx 
(indicating that binding of x to r promotes exclusion). We used a two-tailed Mann-
Whitney U test of ranks to measure enrichment of exons with binding sites at the 
top or bottom of list Lx. The test produces a normalized splicing z-score that 
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follows a standard normal distribution, based on which a p-value can be 
calculated. Benjamini-corrected p-values were used to identify significant 
associations at a false discovery rate (FDR) <0.1. 

To determine target exons that contained a significant match in region r to a motif 
associated with RBP x, we first identified all motifs associated with RBP x by 
collecting all motifs (either RNAcompete-derived or literature-derived) from our 
cisbp-rna database that had at least 70% sequence identity and matching RBD 
domain patterns  to this RBP. We then transformed the position-specific 
frequency matrices provided by cisbp-rna to position-specific affinity matrices 
(PSAMs) by dividing each column by its maximum element. To determine 
whether a particular regulatory region r in a particular exon was significantly 
enriched for matches to a motif, we calculated the “regulatory region affinity 
value” of that motif to region r using the PSAM as described previously88 – in 
brief, we summed the PSAM scores of each k-mer in the regulatory region, 
where k is the width of the PSAM. We then transformed these affinity values to z-
scores by subtracting the mean of these values in region r of all cassette exons 
in our dataset and divided by the standard deviation of this distribution. 
Empirically, the distribution of these z-scores was similar to a standard normal 
distribution, so we associated p-values to z-scores using a one-tailed Z-test, and 
deemed that a region r in a particular target exon had a significant match to the 
binding site of RBP x if the Benjamini-corrected false discovery rate of its affinity 
z-score was less than 10% (where the multiple test correction was applied based 
on all p-values calculated for region r for a given motif). 

Table S3: List of 34 tissues and cell lines used in human post-
transcriptional regulation analysis 

Sample 
Type 

Sample 
Name Platform GEO Series Notes 

ESC 

H1 (a) Illumina GSE23316 GEO: 
GSM591680 

H1 (b) Illumina GSE16256 PMID: 20944595 

H9 (a) Illumina GSE30992 PMID: 21924763 

H9 (b) Illumina GSE22666 PMID: 21324177 

hESC2 SOLiD GSE25842 PMID: 22042643 

iPS 
iPS (a) Illumina GSE32625 PMID: 21915259 

iPS (b) SOLiD GSE16256 GEO: 
GSM706050 
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Cell line 

Fibroblast Illumina GSE30554 PMID: 21890647 

HNEK Illumina GSE30567 GEO: 
GSM765401 

HUVEK Illumina GSE30567 GEO: 
GSM758563 

MCF7 Illumina GSE30567 GEO: 
GSM765388 

GM12878 Illumina GSE23316 GEO: 
GSM591664 

Tissue 

Whole 
Brain Illumina GSE30611 Human Body 

Map 

Cortex Illumina GSE30352 PMID: 22012392 

Cerebellum Illumina GSE30352 PMID: 22012392 

Liver (a) Illumina GSE30611 Human Body 
Map 

Liver (b) Illumina GSE30352 PMID: 22012392 

Kidney (a) Illumina GSE30611 Human Body 
Map 

Kidney (b) Illumina GSE30352 PMID: 22012392 

Heart (a) Illumina GSE30611 Human Body 
Map 

Heart (b) Illumina GSE30352 PMID: 22012392 

Muscle Illumina GSE30611 Human Body 
Map 

Testis (a) Illumina GSE30611 Human Body 
Map 

Testis (b) Illumina GSE30352 PMID: 22012392 

Adipose Illumina GSE30611 Human Body 
Map 

Adrenal Illumina GSE30611 Human Body 
Map 

Breast Illumina GSE30611 Human Body 
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Map 

Colon Illumina GSE30611 Human Body 
Map 

Lung Illumina GSE30611 Human Body 
Map 

Lymph 
node Illumina GSE30611 Human Body 

Map 

Ovary Illumina GSE30611 Human Body 
Map 

Prostate Illumina GSE30611 Human Body 
Map 

Thyroid Illumina GSE30611 Human Body 
Map 

WBC Illumina GSE30611 Human Body 
Map 

 

Defining the exons that are regulated by each splicing-related RBPs using 
leading-edge analysis 

This section repeats and expands on methods presented in the online methods. 

	  

Here, we sought to connect RBPs to the exons that they regulate. Some RBPs 
were associated with more than one recognition motif (e.g. from multiple 
experiments, or by inferring multiple motifs through similarity of RBDs). In the 
previous section, we analyzed each recognition motif separately. After grouping 
motifs by RBP, we found that in general different recognition motifs of each RBP 
resulted in similar conclusions regarding the role of the RBP in regulating splicing 
as well as the regulatory region that the RBP binds (Figure S3). Therefore, for 
each RBP, we combined the set of exons that had at least one significant match 
– in the inferred relevant regulatory region(s) – to one of the motifs with 
significant splicing z-scores. This resulted in a list of exons Ex for each RBP x. 
Re-analysis of PSI profiles of exon set Ex using Mann-Whitney U test of ranks as 
in the previous section showed that this combined set invariably obtains higher 
scores than exon sets defined based on any of the individual motifs of RBP x. 
We further refined the exon set Ex by analyzing the list Lx as described before89 
whereby, in brief, we identified a new, stringent correlation or anti-correlation 

WWW.NATURE.COM/NATURE | 23

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature12311



threshold by finding the threshold that maximized the modified KS-test p-value 
described in 89. This refinement resulted in a high-confidence “leading-edge” list 
of exons that (i) have a binding site for RBP x in the relevant regulatory region 
based on at least one of the significant splicing-associated motifs of x, and (ii) 
have PSI profiles whose correlation or anti-correlation with the expression profile 
of x is above or below the stringent threshold depending on the inferred role of x 
in promoting inclusion or exclusion, respectively. The splicing network that this 
procedure produced is provided in Supplementary Data 7. 

Defining human RBP motifs involved in regulating mRNA stability 

This section repeats and expands on methods presented in the online methods. 

Using the same set of 34 tissues and cell lines as described above, we identified 
RBPs that are involved in regulating mRNA stability. We employed similar 
methods as described above, with the main difference that we used log-
transformed cRPKM profiles instead of PSI profiles. In other words, we examined 
whether the binding sites of RBP x are enriched in 3’ UTRs of genes whose log-
transformed cRPKM profiles are correlated or anti-correlated with the log-
transformed cRPKM profile of RBP x, suggesting a role of x in stabilizing or 
destabilizing its target genes, respectively. We used log-transformed cRPKM 
values because the logarithm of mRNA abundance is presumed to have an 
inverse linear relationship with the logarithm of mRNA decay rate at steady-state 
conditions90. We used a Mann-Whitney U test of ranks to identify significant 
motif-stability associations, similar to the motif-splicing association analysis 
described above. RBP binding sites were examined in the 300-nucleotide region 
immediately downstream of the stop codon of the longest isoform of each gene. 
Only genes whose 3’ UTR consisted of a single exon were considered for this 
analysis, in order to rule out the possibility of erroneous identification of splicing 
factors as stability factors. Note that this rule should exclude exons with 
annotated 3’ UTR alternative splicing sites. The sequences of all of the 
transcripts associated with each gene were downloaded from the UCSC genome 
browser based on the hg19 annotation of the human genome. 

Unlike alternative splicing, we found that mRNA abundance/stability is greatly 
influenced by the GC content of the 3’ UTR. To filter out RBPs whose inferred 
role in regulating stability was confounded by differences in dinucleotide bias 
among 3’ UTRs, we randomly shuffled the 3’ UTR sequences 100 times, each 
time calculating the Mann-Whitney U z-scores of all RBP motifs for association 
with stability. This procedure created a null distribution of z-scores for each motif, 
to which we compared the original z-score of the motif (i.e. the score that was 
obtained using real 3’ UTR sequences). Specifically, we used the random scores 
to calculate the mean and standard deviation of the null distribution for each 
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motif, which was used to transform the original z-score to “z-of-z”. Similar to the 
z-score, we observed that the z-of-z score appears to follow a standard normal 
distribution, so we used a two-tailed Z-test to compute a new p-value for z-of-z 
score. A motif is deemed significantly associated with stability if (i) the p-value 
associated with its original z-score is significant (Benjamini correction, FDR 
<0.1), (ii) its z-score has the same sign as its z-of-z score, and (iii) the p-value 
associated with its z-of-z score is significant (Benjamini correction, FDR <0.1).  

Similar to the procedure described for splicing, we combined the set of genes 
that had binding sites based on different significant motifs of each RBP, creating 
the union set Gx for each RBP x. The set Gx for each RBP was further refined 
using leading-edge analysis as described in the previous section, resulting in a 
high-confidence stability network that is provided in Supplementary Data 7. 
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Figure S3: The binding profile of RBPs that are involved in regulating 
splicing and/or stability. 

Red indicates that binding of the RBP to the corresponding region promotes 
inclusion of the alternative exon or, in the case of binding to 3’ UTR, stability of 
the mRNA. Blue indicates promoting exclusion/instability. The z-scores are 
based on Mann-Whitney U test of enrichment. For 3’ UTRs, z-of-z as defined 
above is indicated. Motif IDs without RNCMPT prefixes are motif IDs from 
RBPDB (http://rbpdb.ccbr.utoronto.ca/). 
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Figure S4: Gene Ontology (GO) enrichment analysis of human RBP motifs 
in 3’ UTRs 

For each RBP with an inferred role in regulating mRNA stability, we examined 
the enrichment and depletion of GO terms among genes in their region target 
sets. In this figure, each column is an RBP, and each row is a GO term. Red 
indicates significant enrichment of the GO term among target genes of the 
corresponding RBP, and blue means significant depletion (Fisher’s exact test, 
Benjamini correction, FDR < 0.1). The color gradient shows the logarithm of p-
value of enrichment or depletion. 
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Figure S5: Information content of motifs versus conservation of bases in 
motif matches 

Bases at degenerate positions of motifs are less conserved than bases at 
positions with high information content. In this figure, the relationship between 
conservation and information content is shown for the non-redundant motifs that 
are represented in Figure 4. The information content (2 – entropy of the column 
measured in bits) and aggregated conservation score (-log10(P-value)) of each 
column of each motif were calculated. The resulting pairs of values were then 
sorted by ascending order of entropy, and running average of conservation was 
calculated for every 100 instances. 
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Table S4:  Motifs used to represent human RBP families in Figure 4. Non-
RNCMPT motif IDs are RBPDB motif IDs (http://rbpdb.ccbr.utoronto.ca/).  
Text	  in	  Fig.	  4	   Protein(s)	   Motif	  ID	  

EIF2S1	   EIF2S1	   RNCMPT00273	  

MEX3B/C/D	   MEX3B,	  MEX3C,	  MEX3D	   RNCMPT00129	  

RBM24/38	   RBM24,	  RBM38	   RNCMPT00184	  

ACO1	   ACO1	   1213_8021254	  

RBM8A	   RBM8A	   RNCMPT00056	  

FXR1/2	   FXR1,	  FXR2	   RNCMPT00020	  

RBM5	   RBM5	   RNCMPT00154	  

SRSF4/5/6	   SRSF4,	  SRSF5,	  SRSF6	   RNCMPT00134	  

RBM45	   RBM45	   RNCMPT00241	  

PABPC5	   PABPC5	   RNCMPT00171	  

SART3	   SART3	   RNCMPT00064	  

HNRNPC/CL1,	  RALY	   HNRNPC,	  HNRNPCL1,	  RALY	   RNCMPT00025	  

TARDBP	   TARDBP	   RNCMPT00076	  

PABPN1/1L	   PABPN1,	  PABPN1L	   RNCMPT00157	  

EIF4B	   EIF4B	   350_8846295	  

RBM6	   RBM6	   RNCMPT00170	  

CPEB2/3/4	   CPEB2,	  CPEB3,	  CPEB4	   RNCMPT00126	  

ANKHD1,	  ANKRD17	   ANKHD1,	  ANKRD17	   RNCMPT00002	  

QKI	   QKI	   149_16041388	  

PTBP1/2/3	   PTBP1,	  PTBP2,	  PTBP3	   RNCMPT00268	  

PABPC1/1L/3/4	   PABPC1,	  PABPC1L,	  PABPC3,	  PABPC4	   RNCMPT00153	  

HNRNPF/H1/H2	   HNRNPF,	  HNRNPH1,	  HNRNPH2	   RNCMPT00160	  

SF3B4	   SF3B4	   RNCMPT00224	  

ENOX1/2	   ENOX1,	  ENOX2	   RNCMPT00149	  
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SRSF2/8	   SRSF2,	  SRSF8	   953_7543047	  

KHDRBS1/2/3	   KHDRBS1,	  KHDRBS2,	  KHDRBS3	   RNCMPT00169	  

PCBP1/2/3/4	   PCBP1,	  PCBP2,	  PCBP3,	  PCBP4	   RNCMPT00044	  

ZC3H10	   ZC3H10	   RNCMPT00085	  

CNOT4	   CNOT4	   RNCMPT00156	  

HNRNPK	   HNRNPK	   RNCMPT00026	  

MBNL1/2/3	   MBNL1,	  MBNL2,	  MBNL3	   RNCMPT00038	  

HNRNPA1/1L2/1P7/2B1/3	  
HNRNPA1,	  HNRNPA1L2,	  HNRNPA1P7,	  

HNRNPA2B1,	  HNRNPA3,	  RP13-‐923O23.5	  
RNCMPT00022	  

SRSF1/9	   SRSF1,	  SRSF9	   RNCMPT00110	  

FMR1	   FMR1	   RNCMPT00016	  

HuR,	  ELAVL2/3/4	   HuR,	  ELAVL2,	  ELAVL3,	  ELAVL4	   784_7972035	  

RBFOX1/2/3	   RBFOX1,	  RBFOX2,	  RBFOX3	   37_16537540	  

ESRP1/2	   ESRP1,	  ESRP2	   RNCMPT00150	  

NONO,	  SFPQ	   NONO,	  SFPQ	   488_9001221	  

SAMD4A/B	   SAMD4A,	  SAMD4B	   RNCMPT00063	  

LIN28A/B	   LIN28A,	  LIN28B	   RNCMPT00036	  

RBM4/4B/14	   RBM14,	  RBM4,	  RBM4B	   RNCMPT00113	  

MATR3	   MATR3	   RNCMPT00037	  

HNRNPL	   HNRNPL	   RNCMPT00027	  

CSDA,	  YBX1/2	   CSDA,	  YBX1,	  YBX2	   114_7499328	  

CELF6	   CELF6	   RNCMPT00122	  

RBM28	   RBM28	   RNCMPT00049	  

SNRPA/B2	   SNRPA,	  SNRPB2	   RNCMPT00145	  

ZFP36/36L1/36L2	   ZFP36,	  ZFP36L1,	  ZFP36L2	   951_12324455	  

PUM1/2	   PUM1,	  PUM2	   RNCMPT00104	  
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!

Figure S6: 2-D hierarchical clustering analysis (Pearson correlation, 
average linkage) of E-scores for all experimental data, with the two halves 
of the array kept as separate columns.   

The 3,954 7-mers with E>0.4 in at least one experiment are included.  To 
emphasize higher E-scores, the data were transformed to E’ = 1010*E-3 prior to 
clustering.  This figure is identical to that in Figure 1C, with the axes transposed 
for display.  The following pages show segments of the heatmap and 
dendrogram of experiments, from left to right, with individual experiments 
labeled. Note that a smaller version of the figure is shown above and a multi-
page blow-up of the figure follows this legend and the clustered E-scores are 
available in Supplementary Data 5. 
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